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Introduction
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OUR OPERATING 
AREA• area

Electricity and gas service area

Gas service area

• Grid operator in provinces 
Utrecht, Zeeland and most of 
Zuid-Holland

• Construction, management 
and maintenance of electricity 
and gas networks 

• 2.4 million households
• Highly urban and industrial 

area (Port of Rotterdam)
• Dense and complex area with 

high energy demand
• Responsible for grids < 110 kV

OUR SERVICE AREA



4

Overview 

 Introduction

 First observations

 Research results

 Next steps



Part 1
Introduction 



LV-networks:
• Electric vehicles (EV)
• Heatpumps
• Solar-PV

MV- and HV-networks:
• Large solar parks
• Wind turbines 
• Battery systems
• Large EV-chargers

Consumption and production on all grid levels
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New challenges
Due to fast integration of renewables 
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Electricity grids in 
transition

THE SYSTEM PERSPECTIVE



Thermal 
energy 
(heat)

Kinetic 
energy 

(rotation) 

Electrical 
energy 

(electricity )
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Conventional energy production (coal/gas/nuclear) 
 centralized 



• High inertia (large, stable, steady)

• Slow response to changes (damping)

• Easily controllable (dispatchable)

• Predictable (plannable)

• Ancillary services: built-in (voltage/frequency control)

• Fossil (non-renewable) energy
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Container ship 

Image: Copilot
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Modern energy production (IBR*: sun, wind)
 decentralized 

“light” energy 
(photovoltaic)

Electrical 
energy 

(electricity)

Kinetic 
energy  

(rotation) 

Electrical 
energy 

(electricity)

*IBR: inverter-based resources  renewable energy sources
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Sailing boats

Image: Copilot

• Low or no inertia (more sensitive)

• Fast response, but risk of instability

• Poor controllability, dependent on weather conditions

• Limited (but increasingly better) predictable, 

dependent on weather conditions

• No/limited additional support services

• Renewable energy sources (wind)
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Subsynchronous 
oscillations (SSOs)
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Subsynchronous oscillations (SSOs)

Definition

• Below fundamental frequency (50 Hz)
• But above the electromechanical range (~ 3 Hz)
• Observed in the phasor domain (e.g. PMUs)

Risks
• Grid stability / System resilience
• Large-scale outages
• Power quality limit exceedance / complaints

Relation with Power Quality
• Interharmonics 
• Can lead to PQ flicker

The existence of interharmonics is a necessary condition to the 
formation of phasor oscillations in the rotating reference frame

Source: T.M.H. Slangen, A. Boricic, S. Frohn, M.S. Janssen, F.J. Wensink, “Sub-synchronous Oscillations and 
Interharmonics with High IBR Penetration - The Dutch 3.5 Hz Case”, in 2026 22nd International Conference on 
Harmonics and Quality of Power (ICHQP), Dresden, Germany, sept 2026 (submitted)



Part 2
First observations 
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Observations TenneT PMU and WAMS
Frequency oscillations 

Bron: TenneT
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Observations TenneT PMU and WAMS: Eemshaven 380 kV
Frequency and HV voltage oscillations 

Bron: TenneT



• Oscillating voltage level on LV (Utrecht)
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Observation DSO PQ flicker monitors
LV Voltage oscillations 

• Exceedance of Flicker limit (Pst) on LV (Utrecht)



Part 3
Research results



Part of newly founded NBNL WG Systeemstabiliteit
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Research consortium “3.5 Hz project”
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Initial analysis
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Observations TenneT PMU and WAMS

Source: TenneT

• Sterke relatie met profiel zonopwek

Voltage oscillations Frequency oscillations 

Bron: energieopwek.nl / 21 juni 2025
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Observations TenneT PMU and WAMS

Source: TenneT

• Sterke relatie met profiel zonopwek

Voltage oscillations Frequency oscillations 

Bron: energieopwek.nl / 21 juni 2025

PV generation. Days with 99% PV (of renewable output)
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Correlation with PV generation capacity

Source: T.M.H. Slangen, A. Boricic, S. Frohn, M.S. Janssen, F.J. Wensink, “Sub-synchronous Oscillations and 
Interharmonics with High IBR Penetration - The Dutch 3.5 Hz Case”, in 2026 22nd International Conference on 
Harmonics and Quality of Power (ICHQP), Dresden, Germany, sept 2026 (submitted)
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Correlation measurement data DSO / TSO
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Further investigation 
relation with renewables
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Relation between 3.5 Hz oscillations, IBR penetration and 
system inertia

Source: T.M.H. Slangen, A. Boricic, S. Frohn, M.S. Janssen, F.J. Wensink, “Sub-synchronous Oscillations and 
Interharmonics with High IBR Penetration - The Dutch 3.5 Hz Case”, in 2026 22nd International Conference on 
Harmonics and Quality of Power (ICHQP), Dresden, Germany, sept 2026 (submitted)
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Relation between 3.5 Hz oscillations and solar PV 
generation

Source: T.M.H. Slangen, A. Boricic, S. Frohn, M.S. Janssen, F.J. Wensink, “Sub-synchronous Oscillations and 
Interharmonics with High IBR Penetration - The Dutch 3.5 Hz Case”, in 2026 22nd International Conference on 
Harmonics and Quality of Power (ICHQP), Dresden, Germany, sept 2026 (submitted)
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DSO Measurements large PV park: no (significant) relation

Source: T.M.H. Slangen, A. Boricic, S. Frohn, M.S. Janssen, F.J. Wensink, “Sub-synchronous Oscillations and 
Interharmonics with High IBR Penetration - The Dutch 3.5 Hz Case”, in 2026 22nd International Conference on 
Harmonics and Quality of Power (ICHQP), Dresden, Germany, sept 2026 (submitted)
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DSO Measurements residential LV PV-inverter: oscillations 
visible due to overvoltage triggering (possible source)

Source: T.M.H. Slangen, A. Boricic, S. Frohn, M.S. Janssen, F.J. Wensink, “Sub-synchronous Oscillations and 
Interharmonics with High IBR Penetration - The Dutch 3.5 Hz Case”, in 2026 22nd International Conference on 
Harmonics and Quality of Power (ICHQP), Dresden, Germany, sept 2026 (submitted)



Part 4
Next steps 
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Next steps
Additional measurement campaign  

• To find sources and propagation of oscillations
• To verify hypotheses 

Collaboration with inverter manufacturers 
• Understanding control mechanisms 

Collaboration with ElaadNL Testlab and Powerlab (HAN/ElaadNL)
• Lab testing different PV-inverters for different grid and operation conditions 
• Characterizing inverter behaviour 

Defining mitigation measures for minimizing risk
• What methods are available to control the oscillations   

Informing and consulting relevant stakeholders 
• Customers, inverter manufacturers, PV-park owners
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Paper submitted to ICHQP’26 Dresden 
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What makes NL unique

BRON: NATIONAAL SOLAR TRENDRAPPORT 2025 - DNE
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Questions? tim.slangen(at)stedin.net 

Thanks! 
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