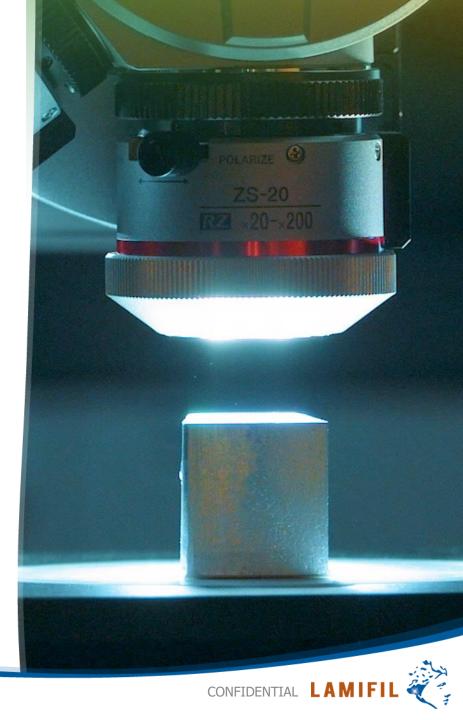


1 February 2024

Towards net-zero emission of T&D grids

CONDUCTOR EFFICIENCY

For more sustainable energy transport



ABSTRACT

CONDUCTOR EFFICIENCY: ABSTRACT

- > Very often the choice of conductor is fixed.
 - > Conductor technology
 - Conductor characteristics
- It is sometimes forgotten that over the last two decades developments have occurred that need the attention of technical decision makers
 - > To choose a better technology
 - > To optimise performance within a technology
- > Often these choices do not require tower reinforcements.

From ACSR to AAAC

CONFIDENTIAL

3 *Connecting with our customers*

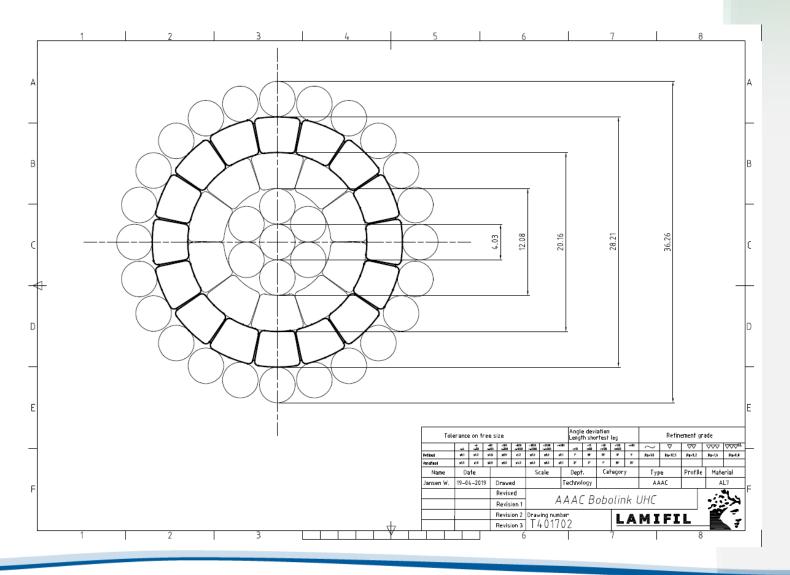
- In the Netherlands a ACSR BOBOLINK was once a solution for a network constraint
- > The conductor characteristics that matter for this presentation are:

	Core	Aluminium	Total Conductor
Diameter (mm)	9,06	36,24	36,24
Section (mm ²)	50,1	725,3	775,4
Weight (g/m)	0,4	2,0	2,4
RTS (kN)	55	116	163
Resistance (Ohm/km)	-	0,0399	0,0399

>

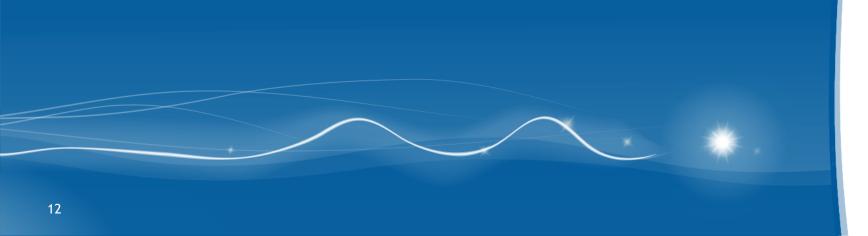
Although the project did not take this intermediate step and went straight for the nest step, this is what an AAAC could do:

	Core	Aluminium	Total Conductor	AAAC
Diameter (mm)	9,06	36,24	36,24	36,24
Section (mm ²)	50,1	725,3	775,4	775,4
Weight (g/m)	0,4	2,0	2,4	2,4
RTS (kN)	55	116	163	217
Resistance (Ohm/km)	-	0,0399	0,0399	0,0428



THE BOBOLINK CASE From AAAC to Closed AAAC

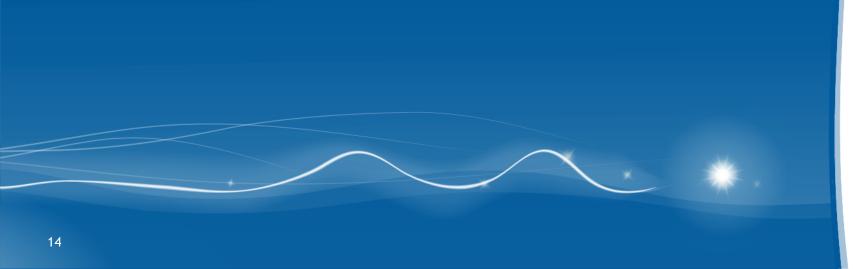
> The design step that was immediately taken was to go for a closed AAAC design:


	Core	Aluminium	Total Conductor	Closed AAAC
Diameter (mm)	9,06	36,24	36,24	36,24
Section (mm ²)	50,1	725,3	775,4	882,3
Weight (g/m)	0,4	2,0	2,4	2,4
RTS (kN)	55	116	163	247
Resistance (Ohm/km)	-	0,0399	0,0399	0,0378

CONFIDENTIAL

From Closed AAAC to EHC Closed AAAC

>


> By introducing highly performant alloys further noticeable improvements can be made:

	Core	Aluminium	Total Conductor	Closed AAAC
Diameter (mm)	9,06	36,24	36,24	36,24
Section (mm ²)	50,1	725,3	775,4	882,3
Weight (kg/m)	0,4	2,0	2,4	2,4
RTS (kN)	55	116	163	218
Resistance (Ohm/km)	-	0,0399	0,0399	0,0341

IMPROVEMENT

Conductor specifications		ACSR Bobolink	AAAC Bobolink	AAAC Bobolink EHC
Resistivity of al or alloy	nOhmm	28,27	32,5	29,5
Tensile strenght al or alloy	Мра	160	295	260
Resistance	Ohm/km	0,03994	0,0378	0,0341
Current (50°C; 50Hz)	А	767	799	839
Current (80°C; 50Hz)	А	1293	1344	1415
Current (90°C; 50Hz)	А	X	1472	1550
Improvement of current at 80°C	%		4%	9%
Improvement of current at max $T = 90^{\circ}C$	%		14%	20%

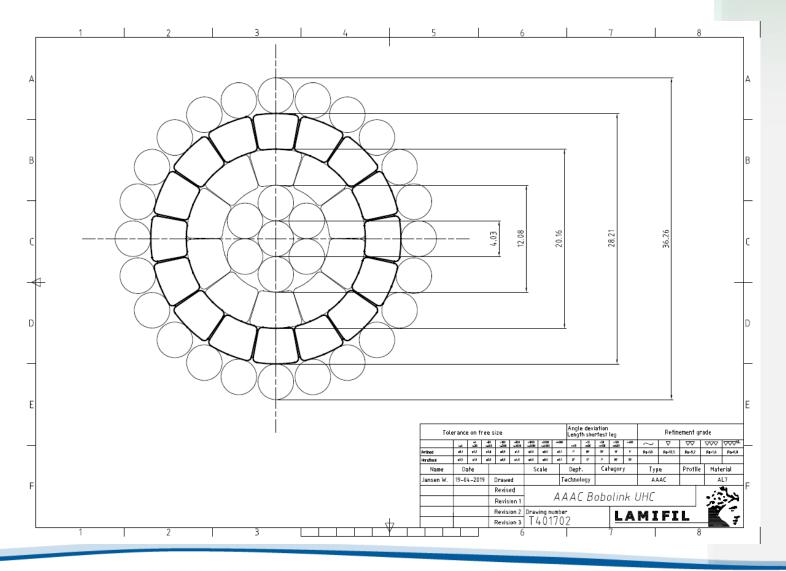
CONFIDENTIAL LAM

Current calculations with environment Temp: 25°C; Emissivity = Absorption coefficient = 0,5; Sun radiation = 1000W/m² and wind velocity = 0,5m/s

Calculation of Joule losses for 500A 50Hz; ambient temperature of 20°C

Conductor specifications		ACSR Bobolink	AAAC Bobolink	AAAC Bobolink EHC
Joule losses	W/km	11292	10047	8967
Temperature at 500A 50Hz	°C	36,4	35,9	35,4
Improvement of Joule losses	%		11%	21%
Joule losses over a year	MWh/km	99	88	79
Costs of 1 MWh	€	50 €	50 €	50 €
Total cost losses	€	4.946 €	4.401 €	3.928 €
Costs saved	€		545 €	1018€
Costs saved for a single circuit	(/year/km)		1.636 €	3.055 €

Connecting with our customers


3

CONFIDENTIAL LAMIFIL 🧳

Calculation of Greenhouse gasses reduction

kWh/km over a year	kWh/km	98920	88013	78551
weight of CO2 per kWh	kg	0,35	0,35	0,35
Total CO2	T/ykm	34,62	30,80	27,49
Total CO2 reduction	T/ykm		3,82	7,13
Total CO2 reduction for a single	e circuit	T/ykm	11	21
Amount of cars that produce to year. (Each car produces 115g/	5	9		

CONFIDENTIAL LAMIFIL 🂐

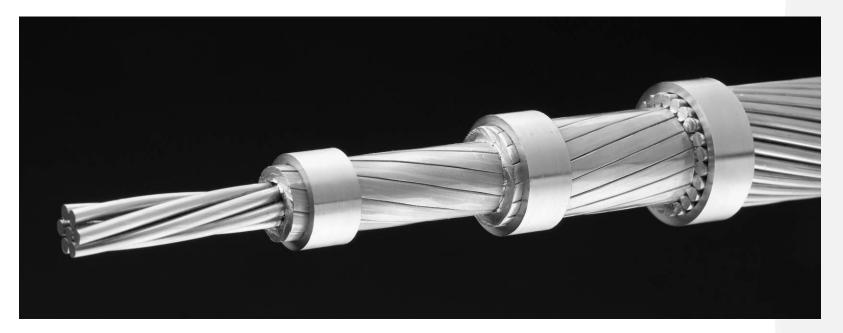
CONFIDENTIAL

3 *Connecting with our customers*

THE GENERAL CASE

- > ACSR can successfully be replaced by UHC closed AAAC:
 - The section of steel is not too high.
 (e.g. a 100% steel core cannot be replaced)
 - The section of steel is too low.
 (e.g. a pure aluminium conductor cannot be replaced)
 - For standard ACSR conductors the replacement will always be successful.

EPILOGUE


- > In a world where sustainability cannot be ignored,
- > efficiency is ever more important
 - Tenders should encourage efficiency improvements by means of award systems so that:
 - Suppliers have incentives to put their brains at work for better design and materials
 - > Long term benefits are generated at comparably nearly no cost

EPILOGUE

CASE AAAC UHC BOBOLINK- TENNET TSO

Yearly cost saving for 710km of conductor	678.222 €
CO ₂ reduction over 30 years	142.427 tonnes CO ₂
Generation capacity reduction	1,548 MW

LET'S BRING CONNECTIONS TO LIFE

1 February 2024

Towards net-zero emission of T&D grids