

Themadag CIGRE B2 LIJNEN een kwestie van VERBINDEN

Dynamic Line Rating: maximalisatie van de belasting d.m.v. omgevingsomstandigheden metingen Daniel MITCAN (CTO, Ampacimon) daniel.mitcan@ampacimon.com

Agenda

- Dynamic Line Rating (DLR)
 - **o** Solution description
 - Sag from conductor vibration
 - **o** Wind measurement
 - Rating forecast
- New Developments
 - Conductor monitoring

System description

Sensors

Enterprise software solution

Highly available, redundant solution EMS/SCADA full integration Cybersecure (ISO-27001) User interface, restAPI, sFTP Cloud/on-prem installations

Line capacity is limited by Sag and Max Conductor Temperature

Thermal limits

- Maximum Conductor Temperature
- Maximum Sag

Rating (maximum load current)

- Static (SLR) based on fixed/seasonal, conservative ambient conditions, no field information
- Dynamic (DLR) based on variable, real-time ambient conditions, with field information

Implementing DLR

3D Accelerations measured with high sensitivity accelerometers

T- Line Vibration Frequency Spectrum (up to 100 Hz used for sag & wind speed measurements)

Sag Measurement

defines the span's signature

Wind Speed measurements

Effective perpendicular component Swing Angle Aeolian Vibrations

Weather Variables

- Ambient temperature
- Solar radiation

Line Information

State Change

Equation

Mean

conductor temperature

- Line Current
- Conductor parameters

Line Tension

 w/Tension Monitor within Sensor (for ice detection)

Transmission Line Performance

- •Real-time Sag monitoring
- Real-time mean conductor temperature monitoring
- Real-time Dynamic Line Rating
- •Transmission Capacity forecast
- (Intra-day, Day-ahead)
- Ice Detection
- •Galloping Detection

Applicable standards and guidelines for calculation of line ratings

Calculation methods are based on Cigré and IEEE standards

– IEEE 738	 Cigré TB 601 	https://e-cigre.org/ https://ieeexplore.ieee.org/
 Cigré TB 207 	 Cigré TB 498 	

- IEEE Standard 738-2012, "IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors," 2012. (IEEE 738) (13)
 CIGRÉ Technical Brochure 207, "Thermal Behavior of Overhead Conductors, Working
- Group 22.12," 2002. (CIGRÉ 207) (14)
- WG B2.42: TB 601 -- Guide For Thermal Rating Calculations Of Overhead Lines

Electra #262, TB #498 -	Guide for application of direct real time monitoring systems
June 2012	on OHL (WGB2.36)

Applicable standards and guidelines for calculation of line ratings

Calculation methods are based on Cigré and IEEE standards

Applicable standards and guidelines for calculation of line ratings

Calculation methods are based on Cigré and IEEE standards

Physics of DLR

Line capacity is sensitive to weather

Ambient conditions impacting rating:

- Wind speed
- Ambient air temperature
- Solar radiation

Line load & wind forecasting

Conductor name: 1033.5 ACSR CURLEW- Diameter: 0.03168 [m] - Aluminium Section: 5.255E4 [m²] - Steel Section: 6.81E-5 [m²] - Absorptivity: 0.9 - Emissivity: 0.7 - K_j: 1.0123 - Resistance at 20°C: 5.5E-5 [Ohm/m] - TemperatureResistanceCoefficient: 0.004 [1/K]

Tennet 380KV – Borselle/Rilland Rating Forecasting

Line Rating Gains – Static vs. AAR vs. DLR

- New Developments
 - Conductor monitoring

Continuous monitoring of weather-induced events and operational parameters

Events: tension variation, ice-weight, galloping, thermal load, sag-outliers, ...

Galloping Event Analysis

^{07:14} 07:16 07:18 07:20 07:22 07:24 07:26 07:28 07:30 07:32 07:34 07:36 07:40 07:42 07:44 07:44 07:38 Time in UTC

Takeaways

- DLR technologies are now well proven, sensors-based, both real-time and forecast, including SCADA/EMS, State Estimator, D2CF, DACF, IDCF integrated to optimize grid operations
- Congestion management (redispatch reduction), interconnectors optimization, renewables integration are evident use cases, with short ROI pay-backs
- Won't replace new/upgraded lines, but can help significantly thanks to quick deployments, flexibility and low investments
- Data analytics supporting continuous monitoring applications

BEDANKT VOOR UW AANDACHT

