## Paris Session 2022 - Key Takeaways C1 – Power System Develoment and Economics



Maksym Semenyuk - DNV

### Key Takeaways – Preferential subjects and report topics



PS 1 - SYSTEM TRANSITION RESILIENCE & ASSET MANAGEMENT RESPONSE

> Application of advanced mathematical methods for predictive maintenance

> > Asset management digitalisation

Expansion planning considering resilience enhancement PS 2 - ENERGY SECTOR INTEGRATION AND TACKLING THE COMPLEXITY OF MULTI-FACETED NETWORK PROJECTS

System coupling and system planning (gas, heat, electricity)

Storage systems in the power system

Interconnection

(Offshore) HVDC grids

Demand response

PS 3 - PLANNING UNDER UNCERTAINTY AND WITH CHANGING EXTERNAL CONSTRAINTS

Grid capability assessment

Long-term load forecasting

Effects of COVID pandemic on load

Inclusion of storage into grid capability assessment

## Paris Session 2022 - C1 Dutch contribution

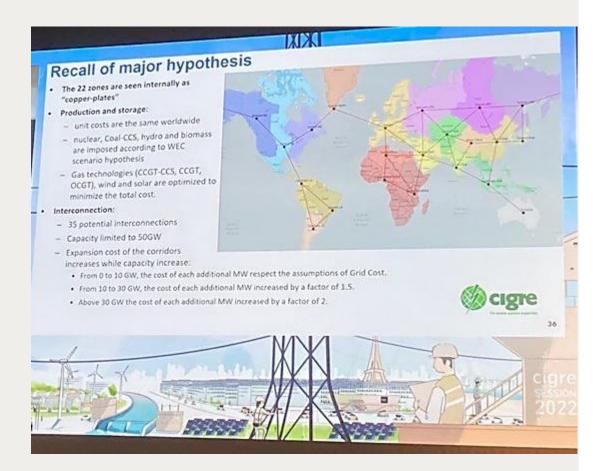


- Two papers
- PS2 Compatibility & interoperability framework to facilitate the step-wise organic development of multi-terminal HVDC grids.

(C.A. PLET1 , D. VAN HERTEM2 , C. BRANTL3 , M. WANG2 , H. EVANS4 , J.N. MOORE7 , C.T. NIEUWENHOUT5 , A ARMENI6 1 DNV; 2 KU Leuven; 3 RWTH Aachen; 4 CarbonTrust; 5 RU Groningen; 6 TenneT; 7)

 Describes the boundary conditions for a successful development of a multi-vendor-multiterminal HVDC grid which may be operated by several operators and owned in parts by different owners.

# PS3 - The Gridmaster-toolbox, a step towards a new infrastructure planning paradigm.


(H.A.M. WURTH1 , J.N.G. VAN DINTHER1 , J.H. KWAKKEL2 , I. NIKOLIC2 , J.J. STERINGA3 , R. CALON4 , W. ZAPPA4 , A.M. VAN VOORDEN5 , C.J.H. KRUIP6 , M.G. VALIES7 1 Siemens Nederland N.V.; 2 TU Delft; 3 N.V. Nederlandse Gasunie; 4 TenneT TSO; 5 Stedin Group; 6 Quintel Intelligence B.V.; 7 SmartPort)

- Proposes a multi-nodal approach to decision making by the introduction of a "Gridmaster" tool. The methodology assists in decision making for investment in energy infrastructure capacity. It is proposed as a stress test for investment plan options between a wide possibility of scenarios.
- Contribution during GDM by Ton Wurth (Siemens)



## Paris Session 2022 – Personal take aways

- Traditionally for C1 a lot of focus on interconnectors and large transmission corridors
- Tutorial: "Global interconnected and sustainable electricity system: effects of storage, demand response and trading rules"
  - A pre-feasibility study on the relative impacts of storage, demand response and interconnectors on a global decarbonised system with large amounts of RES. Approach: modelled the globe as 22 nodes, with own demand and production mixes and patterns.
  - Objective: assess how additional storage, DSF and interconnectors affects the Total Annual Cost (EUR/MWh) and CO2 emissions (Mt/yr)



### Paris Session 2022 – Personal take aways



| Techno-economic optimisation                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cross-border trading enablers                                                                                                                                                                                                                                                                                                                                                    | Coordination and institutional prerequisites                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Combination of flexibility means is needed</li> <li>DR and storage may have global impact on RES integration but are expensive</li> <li>Interconnectors allow to exploit complementarity of load and generation profiles across regions</li> <li>Interconnectors provide security and stability benefits</li> <li>Cost of interconnectors is negligible compared to the cost of generation and fuel, while the impact on decarbonisation is massive</li> </ul> | <ul> <li>Political will and intergovernmental agreements</li> <li>Gradual evolution of the market model from long-term bilateral contracts to more complex capacity allocation based on the energy market settlement</li> <li>Alignment of codes and standards.</li> <li>Coordinated settlement and payment, as well as charging.</li> <li>Institutional arrangements</li> </ul> | <ul> <li>Political support for large projects</li> <li>Legal risk minimisation and investor protection</li> <li>Access to the grid, ownership, operation and maintenance</li> <li>Harmonised transmission tariffs and remuneration frameworks</li> <li>Regional coordination between institutions enabling cooperation of TSOs and utilities</li> <li>Regulatory harmonisation</li> </ul> |

Emphasizes the important role that C1 study committee has in developing the know-how on expanding the transmission grid quickly, in a cost efficient and coordinated way, taking into account regional specifics and developments.

### Paris Session 2022 – Personal take aways



### Situation

- Today's networks are at their limit
- Energy system develops simultaneously in multiple vectors
  - high voltage transmission
  - medium voltage transmission
  - hydrogen
  - heating
- To keep up with the development in RES generation and demand, the scale of investment in the infrastructure needs to grow by several times

### Challenges to be addressed

- How to invest wisely and avoid stranded assets?
- How to invest just enough and minimise societal costs?
- How to coordinate multiple vectors?

#### PS1: Steering the Energy Transition: cooperation, achieving top-down targets through bottom-up investment decisions

- Governance of the different sectors of the integrated energy system, role of system operators, role of regulation & markets; achieving public targets through private investments, coordinated decision-making processes and international cooperation
- Power-to-Gas & Hydrogen as energy carrier and as long-term storage; energy efficiency & infrastructure efficiency in the interconnected electricity/gas/hydrogen system; large interconnection projects
- System aspect aggregation of the electrification of transport, industry, and buildings: conditions and barriers, role of stakeholders in the End-to-End system

#### PS2: Flexibility as pivotal criterion for system development

- Including in the planning process the flexibility options both within and outside the grids; non-network-assets and non-electric solutions: Storage, • Demand Response, Energy Communities, behind-the-meter resources
- Matching flexibility needs with flexibility sources: market design evolution, value of various flexibility products, optimal flexibility portfolio; prioritization of sector coupling initiatives; role of forecasts of demand and variable generation
- Storage device evolution, technical & economic performances, short/medium term measures for balancing the grid, and managing the energy system in the longer term, including thermal & molecular long duration energy storage

#### PS3: Resilience as pivotal criterion for system development

- Metrics and criteria to plan resilience and strength of the future power system; flexibility means as enhancers also of resilience
- Optimal planning and efficient use of resilience measures: risk assessment, prevention, mitigation, adaptation, re-start measures
- Resilience improvements from grid architecture and grid components: including the role of power electronics control and grid forming features, smart load shedding, and fast restoration methods

Interconnections & System Integration

> Grid Planning & System Development



## Preferential subjects C1 2024



## Thank you for your attention!

