Digital Twins

for Power Systems

Peter Palensky TU Delft

Let's go for a sustainable, digital, connected system!

I believe we need a digital twin...

Let's go for a sustainable, digital, connected **power** system!

Behold Satan!

But we need more...

model fidelity Design dynamic for dynamic Control phenomena **Anomaly** check static Sizing of Forecast, equipment scheduling Time series no model **Dashboards** archive speed real-time faster slower

Digital Twins

 Numerical Replicas plus
Workflow

- Synchronized or not
- Now: Big, clumsy, expensive, manual
- Tomorrow: ubiquitous, cloud/edge

Real-time twins: hardware-in-the-loop

- Runs in real-time (not faster, not slower)
- In the loop
 - Controller
 - Power HW
 - People
 - Software

Ancillary Services of Hydrolyzers

Protection Relay assessment

Backup WAMPAC

WAMPAC: Wide Area Measurement Protection and Control

Dutch Power System Real Time Digital Twin

 Transmission (400kV-150kV) in RTDS

- HIL possible
- Distribution in PowerFactory
- SCADA System and control room
- Users, weather, etc. in data center
- Everything open source/access

TU Delft Electrical Sustainable Power Lab

Control Room of the future

Power System Digital Twin Bottom Line

- Numerical vehicle + support SW around
- Stuffed full of data, equations, white and black box models, solvers,...
- Interacting with and learning from real system and people
- Assess complex systems
- → brings people together

