How can a PMU WAM system support a TSO in grid operations and planning?

Jorrit Bos - TenneT TSO

For power system expertise

Contents

- 1. Theoretical background
- 2. Possible PMU and WAMS applications
 - In operations
 - In planning
- 3. Example: PMU measurements system split 08-01-21

Theoretical background – PMU

- PMU Phasor Measurement Unit
- Time synchronised via GPS clock (or PTP)
- Measures:
 - Voltage (and angle)
 - Current (and angle)
 - Frequency
 - Rate-of-change of Frequency (RoCoF)
- In general connected to M-class CT

PMU vs. SCADA measurement

Attribute	SCADA/EMS	PMU
resolution	1 sample every 2 - 10 s	10 - 250 samples/s
observability	quasi-static, typically up to	limited dynamic, typically up to
	0.125 Hz (every 4 sec.)	15 Hz (50 fps)
measurements	V & I (RMS magnitude),	V & I (RMS magnitude and relative
	frequency, analogue values,	angle), frequency, RoCoF,
	Boolean status	analogue values, Boolean status
time synchronisation	no	yes
measurement	at substation's RTU or	at the source
timestamp	central MTU	
relative phase angle	no	yes

Theoretical background – WAMS

• WAMS – Wide Area Monitoring System Multiple (geographically spread) PMUs connected via a Phasor Data Concentrator (PDC)

Theoretical background - Location of PMUs

- For angle dynamics/ power oscillations:
 - At each or near (inside the influencing area) relevant power plants. Monitoring stress of a line corridor
- For frequency:
 - Close to the power plant with the largest inertia
 - Near heavily loaded tie-lines (e.g. tie-lines presenting higher sensitivity to generation variation)
- For voltage stability:
 - Near critical load areas (busbar with lower loadability margin)
 - Near generation (if reaching reactive injection or absorption limit)
 - Nodes equipped with FACTS (e.g. SVCs)

Frequency set point Current Frequency Current Frequency Deviation Current grid time deviation 50 Hz 50.029 Hz 0.029 Hz 11.262 s https://www.swissgrid.ch/en/home/operation/griddata/current-data.html#wide-area-monitoring

7

PMU/WAMS applications in System Operations

- Complement SCADA measurements and Improve State Estimator accuracy
- Online dynamic security assessment
 - Evaluate system stability and margin
 - Islanding detection (frequency, phase)
- Capacity management
 - Monitor corridor loa transfer
 - Dynamic line rating
- Disturbance support
 - Support re-synchror
 - Post-mortem disturk
- Evaluate system streng
 - Online short-circuit
 - Online inertia meas

PMU/WAMS applications in System Planning

- Modelling and controllers:
 - Validation and calibration of dynamic models
 - Compliance monitoring of generators
 - Validation short circuit-calculation
 - Validation inertia calculation
- Mitigation of oscillations:
 - Perform statistic analysis on the recorded oscillating modes
 - Identification of sources of damping and low frequency oscillation modes
 - Perform statistic analysis on the recorded oscillating modes
 - Tune PSS controllers in generation units
- Other applications:
 - Asymmetry analysis

Example - Dynamic model validation

- Short-circuit in Belgium near NL border
- Resulted in 3 phase voltage dip in 380 kV-Borssele, measured by PMU
- Repeated in simulation
- Results (i.e. voltage rise-time and post-fault voltage) match quite well

POLL – PMU/WAMS

Image from ENTSO-E

System Split - 8 January 2021

- Ernestinovo 380 kV substation (Croatia) busbar coupler failure
- Overload protections tripped within 43 seconds
 - First connection in Serbia tripped after 23 seconds
- South of Croatia, Serbia, Romania separated
- Power deficit/surplus: 6,3 GW

System Split - 8 January 2021 (2)

- North-west area frequency drop to 49,74 Hz
 - RoCoF: 60 mHz/sec
- South-east area frequency rise to 50,6 Hz
 RoCoF: 300 mHz/sec

South-East area

Source: ENTSO-E Continental Europe Synchronous Area Separation on 8 January 2021 (Interim Report)

Conclusion

PMUs and WAMS Unmissable tools for TSOs to prevent blackouts in the changing energy landscape

Thank you for your attention!

