A3 report – e-CIGRE 2020
René Peter Paul Smeets
André Lathouwers
rene.smeets@kema.com

A3 session
44 papers presented at e-CIGRE Aug. 26-27, 2020

- HVAC circuit breakers (7)
- SF6 alternatives (11)
- Reliability (9)
- Instrument transformers (5)
- Medium voltage equipment (1)
- Controlled switching (4)
- Testing (3)
- HVDC switchgear (4)
HVAC switchgear

- **In Service Diagnosis of Grading Capacitor Dielectric Deterioration – A3.204 UK Elimpus**
 Dielectric health of grading capacitor
 Sensors: RF PD detector system, 50 Hz, trip current pulse
 Location of PD activity in the breaker
 Shows example of PD in old and replaced capacitor during arcing
 Degradation of GIS grading capacitor (holes in the foil)
 In-service, non-invasive, 0.5 day, also for GIS

- **External flashover of a 245kV live tank circuit breaker – A3.222 France EdF**
 Failure case discussed in detail. Replacement of breaker breakdown very shortly after fault clearance
 Description of failure investigation following IEC 60815-1
 Pollution investigated in the laboratory (salt deposit)
 Highest peak TRV in out-of-phase condition, but not cause of failure
 Creapage distance was too short given the pollution level
 Lab tests set-up in out-of-phase + pollution condition. Leakage current measured
 Failure can be reproduced in the lab
 Replaced by a 345 kV breaker as a solution.

HVAC switchgear

- **Circuit Breaker Derating Assessment under High DC Time Constant – A3-205 UK Univ**
 45 ms dc time constant sometimes too small
 No consensus for approach of dealing with higher DC time constant
 Up to now arc energy in last loop is taken as reference CIGRE TB304
 Equations are given for derating factor
 Simplified method in TB304: taking last loop as rectangular
 UK practice UK EREP 89 discussed, polynomial given, comparison with exact calculation is given
 Comparison between various approaches

- **Fault current limiters for electrical grids 220 kV on the base of the fast acting high voltage explosive commutators – A3.107 Russia**
 Explosive switcher (ES), fast acting commutation
 1.5 ms, 1.7 ton, 5 - 15 kA limitation at 220 kV
 Tests performed
 Bus coupling, at renewable gen plant
 Field experience in 500 kV station in Moscow
 Prospective current of 63 kA can be limited to… kA
 Also for HVDC, and to 500 kV AC

* CIGRE 6-Session 2020
HVAC switchgear

- Development of 362 kV 63 kA 60 Hz SelfBlast Breaker without additional capacitors to prevent ferroresonance by improving the SLF performance – A3.215 Korea LS

60 Hz more severe than 50 Hz, capacitor may be needed to interrupt
This may lead to ferroresonance
Designed is aimed to avoid the add-on capacitor, simulation study for pressure
Detailed report of internal design process
Tested according to IEC

- Damping Performance of VFTO using Magnetic Rings in 800kV GIS – A3.216 Korea Hyosung

Very Fast Transient Overvoltages necessary
Mitigation: Magnetic rings, shunt resistor, RF resonator, surge arrester
Full-voltage test set-up in GIS
Measurement is an issue, 11 MHz is expected in VFTO
3 types of nano-crystalline magnetic rings with upto 36k magnetic permeability
Aim: damping of travelling wave in the GIS
Performance 17% reduction of UHF peak
More rings (upto 17) more effective, but take up space

SF6 alternatives

GAS
- Two commercial available applications
 - g3
 - AirPlus
- Mixtures with small amount of 3M NOVEC gas
- Breaker needs to be redesigned
- NOVEC gas is consumed by arcing
- Decomposition products with as SF6
- Higher pressure, gas composition may vary
- > 20 pilot projects up to 170 kV 50 kA
- CIGRE Technical Brochure 802 + A3.41

<table>
<thead>
<tr>
<th>g3™</th>
<th>GWP</th>
<th>Pmax (MPa)</th>
<th>Tmin (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV: CO2+O2 + 4-6% C4-PFN</td>
<td>327 .. 690</td>
<td>0.67 .. 0.8</td>
<td>-25 .. -10</td>
</tr>
<tr>
<td>MV: N2 + 20-40% C4-PFN</td>
<td>1300 .. 1800</td>
<td>0.13</td>
<td>-25 .. -20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AirPlus™</th>
<th>GWP</th>
<th>Pmax (MPa)</th>
<th>Tmin (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV: CO2+O2 + 6-12% C5-PFK</td>
<td>1</td>
<td>0.7</td>
<td>-5 .. +5</td>
</tr>
<tr>
<td>MV: Air + 7-13% C5-PFK</td>
<td>0.6</td>
<td>0.13</td>
<td>-25 .. -15</td>
</tr>
</tbody>
</table>

VACUUM

- Up to 170 kV 50 kA single break metal enclosed in clean air insulation

CIGRE e-Session 2020
SF6 alternatives

- First 170 kV / 50 kA GIS with Clean Air and Vacuum Interrupter Technology as a Climate neutral Alternative to SF6 – A3.301 Korea Iljin
 Kepco to reduce SF6 emission -> Eco friendly GIS
 -25 – 40 C requirement, GWP< 500, < 1MPa filling pressure
 Synthetic air as insulation, vacuum for switching
 including disconnection switch, also clean air insulated
 including arresters and current transformer
 70% reduction

- The First Development of SF6 free
 170kV 50kA 60Hz GIS with Fluoronitile (C4F7N) Mixtures
 A3.114 – Korea LS
 Based on C4FN, without capacitor
 Simulation based design process
 SF6 design needs to be adapted to new gas after T100 failure
 Capacitive switching (line, cable, bank) C2 class successful
 IEC test-duties passed after modification
 Bus transfer and bus charging performance OK. EM induced longer arcing time
 than SF6. Making test also included.

SF6 alternatives

- Environmental Performance of Dead Tank Circuit Circuit Breakers with SF6 and Alternative Gases – A3.102 USA GE
 72.5, 4000 A, 40 kA rating
 Four alternatives: SF6, CO2/O2/C4FN, vacuum air 0.5 and 0.6 MPa
 Dielectric performance: air needs very high pressure, difficult for vacuum bellows,
 has impact on tank dimension. Vacuum/air 1645 > 2500 kg mass
 LCA aspects of all alternatives
 Climate impact 50-60% reduced, CO2/O2/C4FN lowest impact (lower losses
 lower mass)

- C5 fluoroketone based gas mixtures as current interrupting media in high voltage switchgear – A3.118 Switzerland Hitachi ABB
 C5FK based, GWP < 1, design changes required
 Make proof earthing switch, few 100 A EM ES induced current interrupted
 add gas flow to make it happen.
 Circuit breaker
 CO2 based only 2/3 performance of SF6. Design needs to be optimized: refill valve
 Increase pressure built up an reduce blow-gas temperature
 CFD simulations were used for design
SF6 alternatives

▪ First CO2 neutral 145 kV and up to 63 kA Dead Tank Circuit Breakers based on Vacuum Switching and Clean Air Insulation Technology – A3.106 Germany Siemens
 with PG&E, USA
 maintaining SF6 leaks <1% extremely expensive
 comparison of SF6 and alternatives: clean air, C4FN and C5FK mixtures
 Phase out California > 245 kV 2029 > 550 kV by 2031
 Now demonstrated 145 kV 4000 A 40/63 kA in vacuum
 Type test partially completed IEC and IEEE

▪ Innovative SF6 Free Load Break Switch with Shunt Vacuum Interruption (SVI) Technology- A3.116 France
 Schneider
 MV application
 Pressurized air with vacuum is best alternative, C4FN high toxicity, same as C5FN
 HFO1234zeE with 36 kV products, at lower voltages air instead
 Classical: vacuum + 3 position disconnector (two devices)
 Alternative: vacuum switch operated by the discon mechanism
 Can be used with switch/fuse combination for transformer; pilots running

SF6 alternatives

▪ Theoretical and Practical Behaviour of EcoFriendly SF6 Alternatives in High Voltage Switchgear – A3.119 Switzerland Hyundai
 C4FN based
 Goes into thermodynamics and computational fluid dynamics for decomposition
 Decomposition is an issue for all 3M gases, 0.54 mol/MJ, volume dependent
 Decomposition compared with ablation of nozzle
 170 kV 40 kA case treated, every species density calculation used

▪ Basic aspects of switching with series connected vacuum interrupter units in high voltage metal enclosed and live tank arrangements
 – A3.112 Germany Siemens
 Vacuum and clean air as insulation. Up to 245 kV single break under development
 Up to 550 kV and beyond, multi break needed
 Scale test with two 24 kV vacuum interrupters in series with/without grading caps
 With 825 pF grading even distribution, without 20-80%
 Test with live tank breaker and 500 pF grading and 30% fault current
 Rated voltage 362 kV reached with two gaps rated 145 kV each
 550 kV maybe possible with 2 x 245 kV
SF6 alternatives

- Return of experience of the SF6 free solution by the use of fluoronitrile gas mixture and progress on coverage of full range of transmission equipment – A3.117 France GE
 - Based on C4FN/CO2/O2
 - GIL 420 kV (6 sites); GIS 145 kV (34 bays in service); IT (245 kV - 30 C)
 - No change in gas composition
 - Now up to 63 kA 60 Hz dead tank with 3.5% C5FN, 13% O2, 83.5% CO2
 - Impact of O2 content on physical phenomena (carbon/soot removal)
 - CO reduction at increased O2 content
 - Electrical endurance check: limit is contact degradation, not the gas
 - All HV equipment up to 550 kV replaced with alternatives this decade

Reliability 1

- CIGRE Reliability Survey on Equipment – A3.201 Japan AG3.01
 - International survey, 4th survey reported, 18 utilities, > 520k CB-years
 - Includes now HV VCB and generator circuit breakers
 - Slightly lower reliability wrt 3rd survey, but different set of countries
 - New WG to start end of 2020 for further analysis

- Actual use survey and maintenance practice of circuit breakers for frequent switching applications – A3.206 Japan Hitachi
 - Number of operation is key parameter in wear of breaker
 - Shunt reactor and capacitor bank have high failure rates
 - 468 breakers 72 - 300kV in 3 JP utilities in frequent operation, max 21k operations, 90 percentile is 10k times
 - Shunt reactor operation 2x of capacitor banks ops
 - Maintenance: time based every 6 years, condition based on accumulated current
 - Service life extension: new materials (low erosion nozzle); controlled switching; series reactor in cap bank
 - Life is 40 years
 - TBM now, CBM to become more important
Reliability 2

- A campaign for the ageing evaluation of station hollow core composite insulators after a number of years of service – A3.207 Italy Terna

Polymeric material much more sensitive to stresses than porcelain
420 kV HTV silicone hollow core insulation current transformer
Survey started 2019, list of research programs
Manufacuring extrusion technology of Reinhausen
Salinity resistance studied in Italian grid up to > 160 g/l salinity
Chemical-physical material tests collected (IR, TGA, DSC, DMM, SEA, etc.)

Air core reactor monitoring – not numbered Austria Trench

Essential quantities: temperature, magnetic field, current, vibration
Issues: high voltage surrounding, strong magnetic field inside
Monitoring system shall be maintenance free, needs to harvest its power from the EM field inside the reactor
Scale tests performed in laboratory HV, EM, EMC
Turn-to-turn short detection, surface tracking to be included

Reliability 3

- Approach & Experience of IoT Based Predictive Maintenance Technologies in Power Distribution Network – A3.217 India Tata Power

General causes of failures and mitigation factors
IoT equipment: thermography, ultrasound (tracking, PD activity, not inside busbar)
RFID position sensor on joints
Pilot project 11 kV incoming feeder
Issues: no guidelines, lifetime, reliability, accuracy over time, standards SCAD, ADMS have different protocols, integration into existing infrastructure, limited number of manufacturers

Digital Disconnector and smart sensors: example of integration in the condition base asset management cloud tool – A3.221 France GE

Overview of maintenance strategies
Digital disconnector with plenty of sensors + electronic control
Temperatures, position, motor current, operation energy, ...
Digital twin in the cloud with mechanical, thermal and dielectric model
Digital twin architecture based on MatLab, Ansys behind it
Gives dashboard related to health index 0 - 5
Issues warning when maintenance is required, overload, ageing
To be integrated in AM in the station to predict replacement, maintenance
Reliability 4

▪ Influence of Contact Heating on Main Circuit Resistance Measurement and Dynamic Contact Resistance – A3.211 China GEIRI

▪ Operational Aged Switchgear With The Age Up To 50 Years Investigations, Testing, Results Considerations For The Design And Operation Of Old and New Switchgear – A3.213 Germany TU Berlin

▪ Development of Light Asset Models based on Data Mining – A3.225 France GE – no sound

Medium voltage

▪ Power plants Modernization by Smart integrated vacuum generator breaker switchgears – A3.109 Germany Siemens

 Vacuum switchgear green solution
 Modernization, new standard common IEC and IEEE
 Very large fault currents
 Internal Arc Classification recommended
 Integrated system presented, including protection, control & LV monitoring
 LCA discussed

▪ Two papers not presented:
 ▪ Pollution and Humidity Effects on Air Insulated Switchgear (AIS) of MV/LV Substations A3.219

CIGRE e-Session 2020
Instrument transformers 1

- Studying the characteristics of non-traditional current and voltage converters for digital substations – A3.108 Russia

 Rogowski coil most suitable for relay protection and automation devices (harmonics!) self diagnosis: thermal, PD, applied down to -40 C

- Online monitoring of paper oil insulated current transformers – A3.208 Spain Arteche

 fault evolution up to explosion sensors (in blue): temperature, pressure and hydrogen. Requirements discussed Integration into protection is main challenge

- Investigation of ferroresonance oscillations in the systems with electromagnetic potential transformers by experimental and calculation methods – A3.214 Russia ElMash

 no standards, this paper gives input simulation compared with tests with breaker with grading capacitor IVT 126 kV test with real components. Simulation allows much more cases to be investigated

Instrument transformers 2

- Monitoring of asymmetric short circuit currents at a hydro power plant using electronic fibre optical current transformers DC offset measurement and zero missings - A3.223 CH Condis

 < 10 A absolute error 0-2 kA comparison with conventional VTs, CTs flexible optical fiber transformers (F-EFOCT), wrap around busbar proof-of-concept in FATs, interoperability between digital fault recorder and OCT, communication checked site acceptance tests in hydro-station + full system verification Retrofit is feasible, testability is simple to verify accuracy

- Accuracy study of a combined low power instrument transformer in different climatic and pollution conditions – A3.224 CH Condis

 installed in polluted station at EdF, 2 years with periodic inspections F-EFOCT, Electronic voltage transformer, electronic procession unit temperature cycles for each in climatic chambers after 1 year no ageing, drift of accuracy
Testing 1

- Innovative T&D Switching Equipment and Development of its Testing Technology – A3.104 KEMA NL

 Increase of ratings
 Local generation
 Environment & safety
 Digitalisation
 HVDC switching
 Fast drive technology
 Resilient equipment

Testing 2

- Experience of Capacitive Current Switching of EHV and UHV AC Circuit Breaker in Power System and Test – A3.111 China Xihari

 high rate of incidents in filter bank switching, 400 – 500 switching per day
 faults statistics and failure mode
 standards not covering this,
 new Chinese standard for filterbank switchgear
 NSDDs observed in SF6 breakers
 Synthetic testing with non-decaying AC recovery voltage is highly recommended

- Research on Simulation Testing Method of System Level's Strong Electromagnetic Disturbance in Substations – A3.212 China

 36% failure rate observed in electronic transformers > 110 kV (206 events since 2010)
 cause of failure is EM interference
 simulation study performed with switching disconnector as source
 1-3 MHz oscillation causing 4-20 kV/m E-field and hundreds A/m B field
Controlled Switching

- Overvoltages research in switching modes of cable and mixed overhead cable lines, power transformers, shunt reactors and capacitor banks of 110-750 kV and development of a controlled switching device for the above electrical equipment – A3.208 Russia
- Performance tests of circuit breakers for controlled switching – A3.303 Switzerland/India Hitachi ABB
- Case Study – Improving Reliability of Circuit Breaker by using Controlled Switching and removing Pre-Insertion Resistor (PIR) – A3.115 India PG
- Operational Experience, Field Test and EMT Simulation for EHV Shunt Reactor Switching A3.202 Norway Statnett

HVDC Switchgear

- VARC DC circuit breaker – a versatile concept for nonzero current interruption – A3.103 Sweden SciBreak
- Low loss DC circuit breakers and DC GIS equipment – A3.105 Japan Mitsubishi, Toshiba
- Benchmarking the suitability of a BiStaple Disc Spring as Novel UltraFast Actuation Principle – A3.302 Switzerland ETH
- EDISON: A New Generation DC Circuit Breaker, A3.101 USA Florida Univ
▪ Dank voor uw aandacht!

▪ Voor vragen: rene.smeets@kema.com
 andre.lathouwers@tennet.eu

▪ CIGRE Nationaal Comité A3: T&D Equipment